首页> 外文OA文献 >Nutrient and acetate amendment leads to acetoclastic methane production and microbial community change in a non-producing australian coal well
【2h】

Nutrient and acetate amendment leads to acetoclastic methane production and microbial community change in a non-producing australian coal well

机译:营养物质和乙酸盐的改良导致澳大利亚非生产性煤井中的甲烷碎裂甲烷生产和微生物群落变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coal mining is responsible for 11% of total anthropogenic methane emission thereby contributing considerably to climate change. Attempts to harvest coalbed methane for energy production are challenged by relatively low methane concentrations. In this study, we investigated whether nutrient and acetate amendment of a non-producing sub-bituminous coal well could transform the system to a methane source. We tracked cell counts, methane production, acetate concentration and geochemical parameters for 25 months in one amended and one unamended coal well in Australia. Additionally, the microbial community was analysed with 16S rRNA gene amplicon sequencing at 17 and 25 months after amendment and complemented by metagenome sequencing at 25 months. We found that cell numbers increased rapidly from 3.0 x 104 cells ml-1 to 9.9 x 107 in the first 7 months after amendment. However, acetate depletion with concomitant methane production started only after 12-19 months. The microbial community was dominated by complex organic compound degraders (Anaerolineaceae, Rhodocyclaceae and Geobacter spp.), acetoclastic methanogens (Methanothrix spp.) and fungi (Agaricomycetes). Even though the microbial community had the functional potential to convert coal to methane, we observed no indication that coal was actually converted within the time frame of the study. Our results suggest that even though nutrient and acetate amendment stimulated relevant microbial species, it is not a sustainable way to transform non-producing coal wells into bioenergy factories.
机译:煤炭开采占人为甲烷排放总量的11%,从而极大地促进了气候变化。相对较低的甲烷浓度挑战了收集煤层气用于能源生产的尝试。在这项研究中,我们调查了非生产性次烟煤井的营养物和乙酸盐改良剂是否可以将系统转化为甲烷源。我们在澳大利亚的一口经修正和一口未经修正的煤井中追踪了25个月的细胞计数,甲烷产量,乙酸盐浓度和地球化学参数。此外,在修改后的第17和25个月使用16S rRNA基因扩增子测序对微生物群落进行分析,并在25个月通过基因组测序进行补充。我们发现修正后的前7个月,细胞数量从3.0 x 104细胞ml-1迅速增加到9.9 x 107。但是,只有在12-19个月后才开始消耗乙酸盐并伴有甲烷的产生。微生物群落主要由复杂的有机化合物降解物(厌氧伞形科,杜鹃花科和土杆菌属),乙酰破膜产甲烷菌(Methanothrix spp。)和真菌(姬鼠科)组成。即使微生物群落具有将煤转化为甲烷的功能潜力,我们也没有观察到在研究时间范围内煤实际转化的迹象。我们的结果表明,尽管营养物和乙酸盐的改良剂刺激了相关的微生物物种,但这并不是将非生产性煤井转化为生物能源工厂的可持续方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号